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User-Defined Material Model for Thermo-Mechanical 
Progressive Failure  Analysis 

Norman F. Knight, Jr. 

General Dynamics – Advanced Information Systems, Chantilly, VA 

Abstract

Previously a user-defined material model for orthotropic bimodulus 
materials was developed for linear and nonlinear stress analysis of 
composite structures using either shell or solid finite elements within a 
nonlinear finite element analysis tool. Extensions of this user-defined 
material model to thermo-mechanical progressive failure analysis are 
described, and the required input data are documented.  The extensions 
include providing for temperature-dependent material properties, 
archival of the elastic strains, and a thermal strain calculation for 
materials exhibiting a stress-free temperature. 

Introduction

The analysis of advanced materials in a structural design necessitates having a capability to incorporate a 
user-defined material model within the overall stress analysis.  For high-temperature applications, the 
thermo-mechanical response needs to be investigated.  Previously, a user-defined material model was 
developed for the progressive failure analysis of a bimodulus orthotropic material [1].  This material 
model assumed that only mechanical loading was present, and the material properties were independent 
of temperature.  Extensions to this user-defined material model to accommodate thermal loading and 
temperature-dependent material properties have been incorporated. 

The present report describes the extensions made to the previous user-defined material model (or UMAT 
subroutine for ABAQUS/Standard1), the resulting modifications required for the input data, and the 
corresponding changes to the output response parameters available for archiving in the computational 
database (i.e., saving the numerical results for later post-processing and display).  With these extensions, 
the present UMAT subroutine is applicable to thermo-mechanical stress analyses with temperature-
dependent material properties. 

The present report is organized in the following way.  First, temperature-dependent material properties are 
defined in terms of describing the temperature dependence and interpolation for intermediate temperature 
values.  Second, the thermal strain calculation is presented.  Next, the specific extensions required for the 
previous UMAT subroutine [1] are documented.  A sample input data file is presented to illustrate the 
required input data preparation.  The final section summarizes these UMAT subroutine extensions. 

1 ABAQUS/Standard is a trademark of ABAQUS, Inc. 



Temperature-Dependent Material Properties 

Mechanical properties of a material typically exhibit temperature dependence.  The temperature 
dependence is usually described assuming a piecewise linear interpolation given a set of tabular values for 
each material property (say P(T)) at different temperatures T.  A set of N temperature-property data pairs 
are defined as (T1, P1), (T2, P2), (T3, P3), …,(TN, PN) as shown in Figure 1.  These data pairs are ‘ordered’ 
data pairs (i.e., T1< T2< T3<...<TN ) for the present UMAT subroutine implementation. 

Figure 1.  Illustrative sketch of representative temperature-dependent property description and 
interpolation process. 

These N data pairs may be tabulated from measured data or from design data sheets.  The tabulated values 
are then used with piecewise linear interpolation between data pairs to obtain a property value at an 
intermediate temperature value.  For temperature values outside the temperature range specified in the 
data pairs, the property value is assumed to maintain a constant value equal to the first (or last) data pair.  
That is, for temperatures lower than T1 or higher than TN, the property value is held constant at P1 or PN,
respectively. 

The coefficient of thermal expansion (CTE) is the only material property used by this user-defined 
material model that requires a specific temperature input value TREF.  Typically, secant data are provided 
for a temperature-dependent coefficient of thermal expansion (T) as indicated in Figure 2.  During a 
thermal expansion test, specimen elongation or change in length (L-L0) as a function of temperature is 
measured and the thermal strain computed.  Secant-based CTE values as a function of temperature are 
then determined as illustrated in Figure 2.  The secant-based CTE values are determined using a 
‘reference’ temperature TREF, which must be included as part of the UMAT material property input data, 
and explicitly used in the thermal strain calculation.  In many instances, the reference temperature is equal 
to ambient room temperature.  For materials that do not exhibit a temperature-dependent CTE, the 
reference temperature is still required as an input value; however, it can be any arbitrary value and does 
not affect the thermal strain calculation. 
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Figure 2.   Sketch illustrating a one-dimensional secant-based coefficient of thermal expansion. 

Thermal Strains 

Thermal strains are readily computed within a finite element analysis given a temperature T value and 
material data as a function of temperature.  For the present UMAT subroutine implementation, 
ABAQUS/Standard transfers the total strains to the UMAT subroutine through the subroutine calling 
argument list.  The total strain is a sum of the mechanical strain and the thermal strain as given by: 

Thermal
ij

Mechanical
ij

Total
ij     (1)

where i and j range from one to three for three-dimensional problems and from one to two for two-
dimensional problems.  The normal strain components are denoted when i=j, and the shear strain 
components are denoted when i j.    The UMAT subroutine requires the mechanical strains for the local 
stress analysis and subsequent evaluation of failure criteria and material degradation, if desired.  Hence, 
the present UMAT subroutine internally calculates the thermal strains for a temperature-dependent 
material as defined by: 

 (2) 
jiTTTTTT

ji

InitInitii

Thermal
ij for   )()(

for   0

REFREF

where only the normal strain components have non-zero values, i(T) are the temperature-dependent 
coefficients of thermal expansion, T is the current temperature, TInit is the initial temperature at which no 
thermal strains exist, and TREF  is the reference temperature for a secant-based definition of the 
coefficients of thermal expansion (see Figure 2).   

3



If the CTE is temperature dependent and the initial temperature is identical to the reference temperature 
(i.e., TInit=TREF), then the components of the thermal strain given in Eq. 2 simplify considerably and are: 

 (3) 
jiTTT

ji

i

Thermal
ij for   )(

for   0

Init

where )(Ti is the temperature-dependent value of the CTE.   

If the CTE is temperature independent, then the components of the thermal strain are given by: 

 (4) 
jiTT

ji

i

Thermal
ij for   

for   0

Init
0

where is the temperature-independent CTE value and the initial temperature is independent of the 
reference temperature.  Note that the reference temperature TREF does not explicitly appear in the thermal 
strain calculations of Eq. 3 or 4.   

0
i

Having calculated the thermal strains, the mechanical or elastic strains are then calculated by subtracting 
the thermal strains from the total strains: 

Thermal
ij

Total
ij

Mechanical
ij  (5) 

and used subsequently in other calculations (i.e., for stress calculations and failure criteria evaluations as 
defined in Ref. 1) within the UMAT subroutine. 

ABAQUS/Standard Usage for Thermo-Mechanical Analysis 

ABAQUS/Standard can be used for thermo-mechanical stress analysis by defining temperature conditions 
and selecting a material model.  The present approach for thermo-mechanical stress analysis is described.  
ABAQUS/Standard uses the concept of analysis steps and increments within an analysis step.  
ABAQUS/Standard also uses the concept of defining groups of nodes or elements as “named” sets.  
These sets could be all the nodes (or elements) in the finite element model or nodes (or elements) from 
different regions on the finite element model.  Initial and final temperatures are then defined for each 
node2 using ABAQUS keyword commands.  For example, the initial temperature for the beginning (or 
zeroth increment) of the first solution step is *initial conditions, type=temperature.  The 
final temperature for a solution step is defined by the keyword *temperature.  For the second solution 
step, the final temperature of the first solution step is treated as the initial temperature for the second 
solution step. 

ABAQUS Material Models 

Most of the material models available within ABAQUS/Standard provide for temperature-dependent 
material properties and thermal stress analysis.  Various strains (total, elastic, and thermal) may be 
selected as element output variables by the user and written to the computational database (*.odb file).  

                                                     
2 Element temperatures can not be defined. 
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For temperature-dependent materials, the keyword command *expansion, zero=TREF defines the 
reference temperature for secant-based CTE values.  In addition, the *initial conditions, 
type=temperature keyword command defines the starting temperature for solution step 1, which is 
assumed to correspond to a stress-free state. 

User-Defined Material Models 

User-defined material models implemented as UMAT subroutines can be developed in different forms.  A 
common approach is to omit the keyword command *expansion, zero=TREF, and as a result, the total 
strains are transferred to the UMAT subroutine.  The mechanical strains must therefore be calculated 
within the UMAT subroutine using the approach just presented (i.e., based on Eq. 5).  To post-process 
either the thermal or mechanical strains, they must be identified within the UMAT subroutine as solution-
dependent variables to be archived in the computational database (*.odb file); otherwise, only the total 
strains are available as element output variables, if selected by the user. 

User-Defined Material Model Extensions 

Extensions to the previous UMAT subroutine [1] are required in three areas for thermo-mechanical stress 
analysis:  input data extensions, addition of thermal strain calculations, and extension of the solution data 
archived for subsequent post-processing (i.e., increase the number of solution-dependent variables).  The 
capabilities of the previous UMAT subroutine are preserved with these extensions; however, 
modifications to the input data are required even for temperature-independent material assumptions. 

Input Data Extensions 

Input data for a UMAT subroutine are provided through the subroutine calling argument array PROPS
with NPROPS as the total number of entries in that array.  Input data preparation for the present UMAT 
subroutine for thermo-mechanical progressive failure analysis parallels the preparation of the required 
input data for the previous UMAT subroutine [1] listed in Table 1.  Previously, 55 entries were required 
as input to the UMAT subroutine for each material definition.  With the extensions to include thermo-
mechanical stress analysis with temperature-dependent material properties, each material definition 
requires 61 entries (an additional six entries) for the first temperature value (e.g., room-temperature 
values).  The six variables beyond those required for the previous UMAT subroutine are the values for 
three coefficients of thermal expansion (CTE), the reference temperature for the secant-based CTE, the 
initial or stress-free temperature, and the temperature value for the material properties given in these first 
61 entries.  These data entries are usually the room-temperature values when elevated temperature cases 
are to be analyzed.  However, the first 61 entries are reserved for the material properties corresponding to 
lowest temperature value provided as input (e.g., cryogenic temperatures). 

Additional material properties for other temperature values are appended to these first 61 entries.  For 
each additional temperature value, 34 entries are needed (a temperature value plus 33 property values at 
that temperature).  The input data for the present UMAT subroutine are described in Table 2 for the first 
61 entries and in Table 3 for the 34 entries for each subsequent temperature value.  The total number of 
entries (NPROPS) to be defined for the PROPS input data array in the present UMAT subroutine for 
NTEMPS sets of temperature-dependent properties is equal to: 

)1(3461 NTEMPSNPROPS  (6) 
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That is, if material properties are to be defined over a temperature range using seven specific temperature 
values (i.e., NTEMPS=7), then the number of entries that need to be defined for the PROPS array is 265 
(i.e., 61+34 (7-1) entries). The present implementation is limited to a maximum of ten ‘ordered’ data 
pairs for each material property (i.e., maximum value for NTEMPS is 10); however, this limitation of ten 
is easily increased.  These ‘ordered’ data pairs are defined from the lowest temperature value to the 
highest temperature value.  In addition, all material properties are required for each temperature value 
being provided rather than providing specific tabular data for each property.  Consequently, all material 
properties have values at each input temperature value. 

Thermal Strain Calculations 

Two extensions are required for extending the previous UMAT subroutine to provide a thermo-
mechanical stress analysis capability.  The first extension generates the material properties at the current 
temperature through piecewise-linear interpolation of the input data pairs (i=1,2,…,N).  As indicated in 
Figure 1, this interpolation process for property P at current temperature T has the form: 

NN

iii
ii

ii
i

TTP

NiTTTTT
TT
PPP

TTP

TP

for

1for

for

)( 1
1

1

11

 (7) 

where i ranges from one to N, which equals NTEMPS.  ABAQUS/Standard passes the temperature at the 
beginning of the solution increment as well as the increment of temperature to the UMAT subroutine as 
subroutine calling arguments, and thereby the current temperature at that physical point in the structure is 
known.  The present UMAT subroutine then determines the temperature interval that contains the current 
temperature T using the tabulated input data pairs (i.e., 1ii TTT ).  Given the current temperature T
and its temperature interval, the value of each material property corresponding to that physical point and 
at that temperature is interpolated using Eq. 7.  Once each property value at the current temperature is 
determined, the thermal strains can be calculated using Eq. 2. 

The second extension is the addition of the calculation of the thermal strains using Eq. 2, since the 
previous UMAT subroutine ignored the thermal strains.  Once the thermal strains are calculated within 
the  present UMAT subroutine, then the mechanical or elastic strains are obtained, as indicated by Eq. 5, 
by subtracting these thermal strains from the total strains passed into the present UMAT subroutine from 
ABAQUS/Standard,.  For the present UMAT implementation, the initial temperature TInit is taken as the 
stress-free temperature (SFT or TSF) of the material rather than the initial temperature for the start of the 
solution increment.  The stress-free temperature value is entry 57 in the PROPS array given in Table 2. 

Solution-Dependent Variables 

Output data from within a UMAT subroutine is provided through the subroutine calling argument array 
STATEV with NSTATV as the total number of entries in that array.  These solution-dependent variables 
listed in Table 4 and stored in the STATEV array for the present UMAT subroutine are similar to the 
output variables for the previous UMAT subroutine [1].  These values are element values that may be 
requested by the user for output to the computational database (*.odb file) for post-processing.  The 
number of solution-dependent variables (NSTATV) listed in Table 4 for shell and solid elements increased 
from 8 and 14 to 12 and 20, respectively, for the present UMAT subroutine.  The increase in the number 
of solution-dependent variables permits archiving the mechanical and thermal normal strains (Eq. 5) for a 
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thermo-mechanical stress analysis. The number of solution-dependent variables is defined using the 
keyword *DEPVAR in the ABAQUS/Standard input for each material set included. 

Sample Application 

To illustrate these two approaches (i.e., existing ABAQUS/Standard material models and the present 
UMAT subroutine), a sample thermo-elastic stress analysis problem is posed.  Here, the temperature-
dependent properties of sintered silicon carbide based on material property data listed in Ref. 3 are used 
for illustration.  For this material, the tension and compression elastic moduli are the same, and the 
material is assumed to be isotropic.  The material properties are temperature dependent and the reference 
temperature for the secant-based CTE values is 70 F.  Table 5 lists the temperature-dependent properties 
needed for a linear thermo-elastic stress analysis. 

Assume that a simple three-dimensional configuration is represented by a finite element model with nodes 
and elements defined.  The structure has an initial or starting temperature for the simulation of 10 F (cold 
condition) and a final temperature of 2500 F (hot condition).  For illustrative purposes only, the stress-
free temperature (i.e., temperature at which there is no thermal strain as indicated in Figure 2) of the 
material is assumed to be 500 F.3  The analysis steps and keyword commands for ABAQUS/Standard 
finite element analysis code for these two material modeling approaches are somewhat different and are 
illustrated next. 

Sample Application using ABAQUS Material Models 

For an analysis using an ABAQUS material model, the temperature-dependent material properties are 
defined for the selected material model within ABAQUS/Standard.  For the selected material model, the 
reference temperature for a secant-based CTE is 70 F (i.e., using the *expansion keyword command). 
The input data for the *ELASTIC ABAQUS material model of SiC is illustrated in Table 6.  Note that the 
mechanical properties and the CTE values are defined using different keyword commands. 

The analysis process to obtain solutions at both the cold and hot conditions involves two solution steps. 
The basic ABAQUS/Standard input for this process is illustrated in Table 7.  Step 1 is a static analysis 
that uses the initial (stress free) temperature of 500 F as the starting (initial) temperature for Step 1 using 
the *initial conditions, type=temperature keyword command and increments the temperature 
loading to the final temperature of Step 1 (i.e., the starting cold condition of 10 F) using the 
*temperature keyword command.  The result at the end of Step 1 is the linear elastic thermo-
mechanical response at the cold condition.  The second step is a continuation of the static analysis that 
uses the final temperature from Step 1 (i.e., 10 F) as the starting temperature for Step 2 and increments 
the temperature loading to the final temperature of Step 2 (i.e., the hot condition of 2500 F). The result at 
the end of Step 2 is the linear elastic thermo-mechanical response at the hot condition.  If the cold 
condition response was not desired, then a single analysis step could have been performed where the 
starting (or initial) temperature is again the stress-free temperature and the final temperature is the hot 
condition.

Sample Application using Present UMAT Material Model 

For an analysis using the present UMAT subroutine, the basic ABAQUS/Standard input is illustrated in 

                                                     
3 Again this is only assumed to illustrate the analysis process and is NOT indicative of sintered silicon 
carbide.
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Table 8.  The reference temperature (70 F) and the initial stress-free temperature (500 F) are defined as 
input variables and used internally by the present UMAT subroutine to calculate the thermal strains using 
Eq. 2.  The input data set for six temperature values (NTEMPS=6) is illustrated in Table 9 for SiC with the 
six temperature values being underlined (i.e., the temperatures values are 75, 1000, 1500, 2000, 2500, 
2732; all degrees Fahrenheit).  A total of 231 entries in the PROPS array are needed for this case (i.e., 
61+34 (6-1) entries).  The preparation of the material input data for the present UMAT subroutine is 
somewhat tedious – especially for a linear elastic isotropic material.  In some cases, a separate 
FORTRAN computer program can be developed to simplify the data preparation step.  

The number of solution-dependent variables for this sample data set is defined using the ABAQUS 
keyword command *DEPVAR.  The sample data set shown in Table 9 contains a value of 20 for the 
keyword command *DEPVAR implying the data set is for a three-dimensional problem.  For a two-
dimensional plane stress problem, the value would be 12.  The input data set is unchanged whether a two- 
or three-dimensional problem is to be solved. 

Implicit in the present UMAT subroutine is the assumption that the 3-direction of the material system is 
defined as the through-the-thickness, transverse, or interlaminar normal direction, while the 1- and 2-
directions are the in-plane directions for the material system.  Orientation of the element and material 
coordinate systems needs to be performed by the user through the *orientation keyword command 
in ABAQUS/Standard. 

The keyword command *expansion is omitted as part of the analysis input data for ABAQUS/Standard, 
and therefore the total strains are passed to the present UMAT subroutine.  The analysis process involves 
two static analysis steps.  The starting temperature for the analysis step is defined using the *initial
conditions, type=temperature keyword command (e.g., assume the default value of 0 F as the 
initial value) and the final temperature for Step 1 is defined using the *temperature keyword command 
(i.e., the cold condition of 10 F).  Then Step 2 is a continuation of the static analysis that uses the final 
temperature from Step 1 (i.e., 10 F) as the starting temperature for Step 2 and increments the temperature 
loading to the final temperature of Step 2 (i.e., the hot condition of 2500 F).

Summary

The present report describes the extensions implemented within a previous user-defined material model 
[1] in order to analyze temperature-dependent, bimodulus orthotropic materials subjected to thermo-
mechanical loading.  Extensions for the present UMAT subroutine include treatment of the temperature-
dependent material properties, thermal strain calculations, and archiving mechanical or elastic strains for 
post-processing.  The input material property data are described and the preparation of the present UMAT 
subroutine input data is illustrated. 
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Table 1.  User-defined property data for the previous UMAT subroutine [1]. 

PROPS array 
entry, i 

Variable
name 

Description

1,2,3 Et(i) Initial elastic tension moduli: E11t, E22t, E33t
4,5,6 Ec(i) Initial elastic compression moduli: E11c, E22c, E33c
7,8,9 G0(i) Initial elastic shear moduli: G12, G13, G23
10,11,12 Anu(i) Poisson’s ratios: 12, 13, 23
13,14,15 Xt(i) Ultimate tension stress allowable values in the 1-, 2-, 3-directions 
16,17,18 Xc(i) Ultimate compression stress allowable values in the 1-, 2-, 3-directions 
19,20,21 S(i) Ultimate shear (12-, 13-, 23-planes) stress allowable values 
22,23,24 EpsT(i) Ultimate normal tension strain allowable values in the 1-, 2-, 3-directions 
25,26,27 EpsC(i) Ultimate normal compression strain allowable values in the 1-, 2-, 3-

directions
28,29,30 GamS(i) Ultimate shear (12-, 13-, 23-planes) strain allowable values  
31,32,33 EpsTx(i) Maximum normal tension strain allowable value in the 1-, 2-, 3-directions; 

currently not used
34,35,36 EpsCx(i) Maximum normal compression strain allowable values in the 1-, 2-, 3-

directions; currently not used
37,38,39 GamSx(i) Maximum shear (12-, 13-, 23-planes) strain allowable values; currently not 

used
40 GIc Critical strain energy release rate for Mode I fracture 
41 FPZ Width of the fracture process zone 
42 SlimT Stress limit factor for tension behavior; currently not used
43 SlimC Stress limit factor for compression behavior; currently not used
44 SlimS Stress limit factor for in-plane shear behavior; currently not used
45, 46, 47 Weibl(i) Weibull parameter of MLT model for normal stress components (i=1, 2, 3); 

currently not used
48, 49, 50 Weibl(j) Weibull parameter of MLT model for shear stress components (j=4, 5, 6); 

currently not used
51 Dgrd(1) Material degradation factor for tension failures, non-zero values result in 

degradation after failure initiation; active only when PDA=1 to 4 
52 Dgrd(2) Material degradation factor for compression failures, non-zero values result 

in degradation after failure initiation; active only when PDA=1 to 4
53 Dgrd(3) Material degradation factor for shear failures, non-zero values result in 

degradation after failure initiation; active only when PDA=1 to 4
54 RECURS Flag for selecting the type of material degradation: 0=instantaneous, 

1=recursive when PDA=1 to 4
55 PDA Progressive failure analysis option (0=linear, elastic, bimodulus response, 

1=use maximum stress criteria, 2=use maximum strain criteria, 3=use Tsai-
Wu polynomial, 4=use Hashin criteria) 



Table 2.  First 61 values of the user-defined property data for the present extended UMAT subroutine. 

PROPS array 
entry, i 

Variable
name 

Description

1,2,3 Et(i) Initial elastic tension moduli: E11t, E22t, E33t at temperature T1
4,5,6 Ec(i) Initial elastic compression moduli: E11c, E22c, E33c at T1
7,8,9 G0(i) Initial elastic shear moduli: G12, G13, G23 at T1
10,11,12 Anu(i) Poisson’s ratios: 12, 13, 23 at T1
13,14,15 Xt(i) Ultimate tension stress allowable values in the 1-, 2-, 3-directions at T1
16,17,18 Xc(i) Ultimate compression stress allowable values in the 1-, 2-, 3-directions at T1
19,20,21 S(i) Ultimate shear (12-, 13-, 23-planes) stress allowable values at T1
22,23,24 EpsT(i) Ultimate normal tension strain allowable values in the 1-, 2-, 3-directions at 

T1
25,26,27 EpsC(i) Ultimate normal compression strain allowable values in the 1-, 2-, 3-

directions at T1
28,29,30 GamS(i) Ultimate shear (12-, 13-, 23-planes) strain allowable values at T1
31,32,33 EpsTx(i) Maximum normal tension strain allowable value in the 1-, 2-, 3-directions at 

T1
34,35,36 EpsCx(i) Maximum normal compression strain allowable values in the 1-, 2-, 3-

directions at T1
37,38,39 GamSx(i) Maximum shear (12-, 13-, 23-planes) strain allowable values  
40 GIc Critical strain energy release rate for Mode I fracture  
41 FPZ Width of the fracture process zone 
42 SlimT Stress limit factor for tension behavior; currently not used
43 SlimC Stress limit factor for compression behavior; currently not used
44 SlimS Stress limit factor for in-plane shear behavior; currently not used
45, 46, 47 Weibl(i) Weibull parameter of MLT model for normal stress components (i=1, 2, 3); 

currently not used
48, 49, 50 Weibl(j) Weibull parameter of MLT model for shear stress components (j=4, 5, 6); 

currently not used
51 Dgrd(1) Material degradation factor for tension failures, non-zero values result in 

degradation after failure initiation; active only when PDA=1 to 4 
52 Dgrd(2) Material degradation factor for compression failures, non-zero values result 

in degradation after failure initiation; active only when PDA=1 to 4
53 Dgrd(3) Material degradation factor for shear failures, non-zero values result in 

degradation after failure initiation; active only when PDA=1 to 4
54 RECURS Flag for selecting the type of material degradation: 0=instantaneous, 

1=recursive when PDA=1 to 4
55 PDA Progressive failure analysis option (0=linear, elastic, bimodulus response, 

1=use maximum stress criteria, 2=use maximum strain criteria, 3=use Tsai-
Wu polynomial, 4=use Hashin criteria) 

56 Tref Reference temperature for secant-based CTE values 
57 Tinit Initial (or stress free) temperature 
58 Temp1 Temperature for the first set of property values, T1
59, 60, 61 CTE(i) Secant-based coefficients of thermal expansion in the 1-, 2-, 3-directions at 

T1
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Table 3.  Repeating sets of the user-defined property data for each specific temperature value beyond the 
first value (j=2 through NTEMPS) for the present extended UMAT subroutine. 

Additional
PROPS array 
entries, i*

Variable
name 

Description

1 T(j) Temperature for the j-th set of properties (values at Tj)
2,3,4 Et(i) Initial elastic tension moduli: E11t, E22t, E33t at temperature Tj
5,6,7 Ec(i) Initial elastic compression moduli: E11c, E22c, E33c at Tj
8,9,10 G0(i) Initial elastic shear moduli: G12, G13, G23 at Tj
11,12,13 Anu(i) Poisson’s ratios: 12, 13, 23 at Tj
14,15,16 Xt(i) Ultimate tension stress allowable values in the 1-, 2-, 3-directions at Tj
17,18,19 Xc(i) Ultimate compression stress allowable values in the 1-, 2-, 3-directions at Tj
20,21,22 S(i) Ultimate shear (12-, 13-, 23-planes) stress allowable values at Tj
23,24,25 EpsT(i) Ultimate normal tension strain allowable values in the 1-, 2-, 3-directions at 

Tj
26,27,28 EpsC(i) Ultimate normal compression strain allowable values in the 1-, 2-, 3-

directions at Tj
29,30,31 GamS(i) Ultimate shear (12-, 13-, 23-planes) strain allowable values at Tj
32,33,34 CTE(i) Secant-based coefficients of thermal expansion in the 1-, 2-, 3-directions at 

Tj

*PROPS(61+34*(j-2)+i) where j is the temperature set number and i is the entry for the j-th set. 
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Table 4.  UMAT-defined solution-dependent variables. 

STATEV
array 
entry i

Solution-
Dependent
Variable Name 

Description of Solution-Dependent Variables  

Two-dimensional shell elements, NDV=12
1 dmg(1) Degradation factor for the 11 stress component 
2 dmg(2) Degradation factor for the 22 stress component 
3 dmg(3) Degradation factor for the 12 stress component 
4 fflags(1) Failure flag for first failure mode 
5 fflags(2) Failure flag for second failure mode 
6 fflags(3) Failure flag for third failure mode 
7 SEDtot Total strain-energy density 
8 Damage Damage estimate based on energy lost (total minus 

recoverable)/(fracture toughness) 
9 strain(1) Mechanical normal strain component 11

10 strain(2) Mechanical normal strain component 22

11 thstrain(1) Thermal normal strain component 11

12 thstrain(2) Thermal normal strain component 22

Three-dimensional solid elements, NDV=20
1 dmg(1) Degradation factor for the 11 stress component 
2 dmg(2) Degradation factor for the 22 stress component 
3 dmg(3) Degradation factor for the 33 stress component 
4 dmg(4) Degradation factor for the 12 stress component 
5 dmg(5) Degradation factor for the 13 stress component 
6 dmg(6) Degradation factor for the 23 stress component 
7 fflags(1) Failure flag for first failure mode 
8 fflags(2) Failure flag for second failure mode 
9 fflags(3) Failure flag for third failure mode 
10 fflags(4) Failure flag for fourth failure mode 
11 fflags(5) Failure flag for fifth failure mode 
12 fflags(6) Failure flag for sixth failure mode 
13 SEDtot Total strain-energy density 
14 Damage Damage estimate based on energy lost (total minus 

recoverable)/(fracture toughness) 
15 strain(1) Mechanical normal strain component 11

16 strain(2) Mechanical normal strain component 22

17 strain(3) Mechanical normal strain component 33

18 thstrain(1) Thermal normal strain component 11

19 thstrain(2) Thermal normal strain component 22

20 thstrain(3) Thermal normal strain component 33

Note:  The degradation solution-dependent variables (SDVs) should be zero until failure initiation is 
detected.  Once failure initiation has been detected, the degradation SDVs will be non-zero and approach 
a value of unity (i.e., complete degradation at that material point).  The failure flag SDVs are the solution 
increment number when failure initiation at that material point and for that stress component is detected.  
Contour plots of the failure flag SDVs can be used to give an indication of the evolution of the damage 
progression.



Table 5.  Typical material properties for sintered silicon carbide (SiC) based on Ref. 3. 

Temperature, F

75 1000 1500 2000 2500 2732 

Modulus of elasticity, Msi 13.6 13.2 13.0 12.8 12.6 12.4 

Poisson’s ratio 0.16 0.16 0.16 0.16 0.16 0.16 

Coefficient of thermal expansion, 
in./in./ F (with TREF=70 F) 2.4 10-6 2.56 10-6 2.65 10-6 2.75 10-6 2.85 10-6 2.9 10-6

Table 6.  Sample ABAQUS/Standard *ELASTIC material input data for representative linear elastic 
isotropic material. 

These input records are assumed to be contained in a files named sic-elastic.dat and are read into 
the ABAQUS/Standard input file by using the *INCLUDE keyword command. 

** Material Properties Definition 
*Material, name=SIC 
*Elastic, type=isotropic 
**  Modulus, Poisson’s ratio, temperature 
13.6e6, 0.16, 75.0 
13.2e6, 0.16, 1000.0 
13.0e6, 0.16, 1500.0 
12.8e6, 0.16, 2000.0 
12.6e6, 0.16, 2500.0 
12.4e6, 0.16, 2732.0 
*Expansion, type=iso, zero=70 
** CTE, temperature 
2.4e-6, 75.0 
2.56e-6, 1000.0 
2.65e-6, 1500.0 
2.75e-6, 2000.0 
2.85e-6, 2500.0 
2.90e-6, 2732.0 
**
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Table 7.  Selected ABAQUS/Standard input commands for sample thermo-mechanical problem using 
*ELASTIC material model. 

** Basic ABAQUS Finite Element Model definitions and input 
** Assumes FE model has NN nodes numbered sequentially from 1 to NN 
** and NE elements numbered sequentially from 1 to NE 
**
...
** Define element coordinate frame to have '3-direction' in the 
** thickness direction 
*orientation, definition=offset to nodes, name=elemframe 
   2, 3, 1 
** Note this orientation definition is illustrative ONLY. 
**
** Assign solid section properties to named element set
*solid section, elset=ALL-Elements, material=SIC, orientation=elemframe 
   1., 
**
** Material Properties Definition 
*INCLUDE, input=sic-elastic.dat 
**
**  Define element set 
*ELSET, elset=ALL-Elements 
** where [NE] is the number of elements 
   1,[NE],1 
** Define node set 
*NSET, nset=ALL-Nodes 
** where [NN] is the number of nodes in the finite element model 
   1,[NN],1 
**
**  Assign initial AND stress-free temperature 
**  to named node set 
*Initial conditions, type=temperature 
    ALL-Nodes, 500. 
**
** ============ 
** STEP: Step-1 
** ============ 
*Step, name=Step-1, nlgeom=yes 
*Static
   .1, 1., 1e-05, 1. 
**
** Assign Step 1 final temperature of 10-deg. F to named node set 
*Temperature
   ALL-Nodes, 10. 
**
*OUTPUT, FIELD, FREQ=5 
**output nodal displacements and temperatures 
*NODE OUTPUT 
   U, NT 
** output element stresses, total, elastic, and thermal strains 
*ELEMENT OUTPUT 
   S, 
   E,EE,THE 
*END STEP 

14



Table 7.  Concluded.   

** ============ 
** STEP: Step-2 
** ============ 
*Step, name=Step-2, nlgeom=yes 
*Static
   .1, 1., 1e-05, 1. 
**
** Assign Step 2 final temperature of 2500-deg. F to named node set 
*Temperature
   ALL-Nodes, 2500. 
**
*OUTPUT, FIELD, FREQ=5 
** output nodal displacements and temperatures 
*NODE OUTPUT 
   U, NT 
** output element stresses, total, elastic, and thermal strains 
*ELEMENT OUTPUT 
   S, 
   E,EE,THE 
*END STEP

15



Table 8.  Selected ABAQUS/Standard input commands for sample thermo-mechanical problem using the 
present UMAT subroutine. 

** Basic ABAQUS Finite Element Model definitions and input 
** Assumes FE model has NN nodes numbered sequentially from 1 to NN 
** and NE elements numbered sequentially from 1 to NE 
**
...
** Define element coordinate frame to have '3-direction' in the 
** thickness direction (required for present UMAT) 
*orientation,  definition=offset to nodes, name=elemframe 
   2, 3, 1 
** Note this orientation definition is illustrative ONLY. 
**
** Assign solid section properties to named element set
*solid section, elset=ALL-Elements, material=UserSIC, orientation=elemframe 
  1., 
**
** Material Properties Definition 
*INCLUDE, input=sic-umat.dat 
** (input data given in Table 9) 
...
**
**  Define element set 
*ELSET, elset=ALL-Elements 
** where [NE] is the number of elements 
   1,[NE],1 
** Define node set 
*NSET, nset=ALL-Nodes 
** where [NN] is the number of nodes in the finite element model 
   1,[NN],1 
**
**  Assign initial temperature (NOT a stress-free temperature) 
**  to named node set 
*Initial conditions, type=temperature 
    ALL-Nodes, 0. 
**
** ============ 
** STEP: Step-1 
** ============ 
*Step, name=Step-1, nlgeom=yes 
*Static
   .1, 1., 1e-05, 1. 
**
** Assign Step 1 final temperature of 10-deg. F to named node set 
*Temperature
   ALL-Nodes, 10. 
**
*OUTPUT, FIELD, FREQ=5 
**output nodal displacements and temperatures 
*NODE OUTPUT 
   U, NT 
** output element stresses, solution-dependent variables, total strains 
*ELEMENT OUTPUT 
   S,SDV, 
   E 
*END STEP 
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Table 8.  Concluded.   

** ============ 
** STEP: Step-2 
** ============ 
*Step, name=Step-2, nlgeom=yes 
*Static
   .1, 1., 1e-05, 1. 
**
** Assign Step 2 final temperature of 2500-deg. F to named node set 
*Temperature
   ALL-Nodes, 2500. 
**
*OUTPUT, FIELD, FREQ=5 
** output nodal displacements and temperatures 
*NODE OUTPUT 
   U, NT 
** output element stresses, solution-dependent variables, total strains 
*ELEMENT OUTPUT 
   S,SDV, 
   E 
*END STEP 
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Table 9.  Sample extended UMAT input data for representative linear elastic isotropic material with 
temperature-dependent properties. 

These input records are assumed to be contained in a files named sic-umat.dat and are read into the 
ABAQUS/Standard input file by using the *INCLUDE keyword command. 

** ========================================================================================== 
** ========================================================================================== 
** UMAT Property Data Definitions
** props(1-8):E11t,E22t,E33t,E11c,E22c,E33c,G12,G13, 
** props(9-16):G23,nu12,nu13,nu23, Xt, Yt, Zt, Xc, 
** props(17-24):Yc,Zc,S12,S13,S23,Eps11T,Eps22T,Eps33T, 
** props(25-32):Eps11C,Eps22C,Eps33C,Gam12,Gam13,Gam23,Eps11Tmx,Eps22Tmx, 
** props(33-40):Eps33Tmx,Eps11Cmx,Eps22Cmx,Eps33Cmx,Gam12mx,Gam13mx,Gam23mx,GIc, 
** props(41-48):FPZ,SlimT,SlimC,SlimS,weibull(1),weibull(2),weibull(3),weibull(4), 
** props(49-56):weibull(5),weibull(6),Dgrd(1),Dgrd(2),Dgrd(3),RECURS,PDA,Tref 
** props(57-61):Tinit=SFT,First Temp Value,cte(1),cte(2),cte(3) 
** plus 34 entries for each additional temperature value 
** ========================================================================================== 
** Sintered Silicon Carbide       data for     6 temperature values 
*MATERIAL, NAME=UserSIC
*USER MATERIAL,  CONSTANTS=231 
 1.360E+07, 1.360E+07, 1.360E+07, 1.360E+07, 1.360E+07, 1.360E+07, 5.900E+06, 5.900E+06, 
 5.900E+06, 1.600E-01, 1.600E-01, 1.600E-01, 5.500E+04, 5.500E+04, 3.300E+04, 5.500E+04, 
 5.500E+04, 5.000E+04, 5.500E+04, 1.920E+03, 1.920E+03, 4.044E-03, 4.044E-03, 2.426E-03, 
 4.044E-03, 4.044E-03, 3.676E-03, 9.323E-03, 3.254E-04, 3.254E-04, 1.000E-01, 1.000E-01, 
 1.000E-01, 1.000E-01, 1.000E-01, 1.000E-01, 1.000E-01, 1.000E-01, 1.000E-01, 3.080E+01, 
 2.000E-01, 0.000E+00, 0.000E+00, 0.000E+00, 1.000E+00, 1.000E+00, 1.000E+00, 1.000E+00, 
 1.000E+00, 1.000E+00, 5.000E-01, 5.000E-01, 5.000E-01, 1.000E+00, 0.000E+00, 7.000E+01, 
 0.500E+03, 7.500E+01, 2.400E-06, 2.400E-06, 2.400E-06, 1.000E+03, 1.320E+04, 1.320E+04, 
 1.320E+07, 1.320E+07, 1.320E+07, 1.320E+07, 5.700E+06, 5.700E+06, 5.700E+06, 1.600E-01, 
 1.600E-01, 1.600E-01, 4.199E+04, 4.199E+04, 3.144E+04, 4.199E+04, 4.199E+04, 4.199E+04, 
 5.500E+04, 1.920E+03, 1.920E+03, 3.181E+00, 3.181E+00, 2.382E-03, 3.181E-03, 3.181E-03, 
 3.181E-03, 9.650E-03, 3.368E-04, 3.368E-04, 2.560E-06, 2.560E-06, 2.560E-06, 1.500E+03,
 1.300E+04, 1.300E+04, 1.300E+07, 1.300E+07, 1.300E+07, 1.300E+07, 5.600E+06, 5.600E+06, 
 5.600E+06, 1.600E-01, 1.600E-01, 1.600E-01, 3.766E+04, 3.766E+04, 3.060E+04, 3.766E+04, 
 3.766E+04, 3.766E+04, 5.500E+04, 1.920E+03, 1.920E+03, 2.897E+00, 2.897E+00, 2.354E-03, 
 2.897E-03, 2.897E-03, 2.897E-03, 9.822E-03, 3.429E-04, 3.429E-04, 2.650E-06, 2.650E-06, 
 2.650E-06, 2.000E+03, 1.280E+04, 1.280E+04, 1.280E+07, 1.280E+07, 1.280E+07, 1.280E+07, 
 5.500E+06, 5.500E+06, 5.500E+06, 1.600E-01, 1.600E-01, 1.600E-01, 3.333E+04, 3.333E+04, 
 2.975E+04, 3.333E+04, 3.333E+04, 3.333E+04, 5.500E+04, 1.920E+03, 1.920E+03, 2.604E+00, 
 2.604E+00, 2.325E-03, 2.604E-03, 2.604E-03, 2.604E-03, 1.000E-02, 3.491E-04, 3.491E-04, 
 2.750E-06, 2.750E-06, 2.750E-06, 2.500E+03, 1.260E+04, 1.260E+04, 1.260E+07, 1.260E+07, 
 1.260E+07, 1.260E+07, 5.400E+06, 5.400E+06, 5.400E+06, 1.600E-01, 1.600E-01, 1.600E-01, 
 2.900E+04, 2.900E+04, 1.623E+04, 2.900E+04, 2.900E+04, 2.900E+04, 5.500E+04, 1.920E+03, 
 1.920E+03, 2.302E+00, 2.302E+00, 1.288E-03, 2.302E-03, 2.302E-03, 2.302E-03, 1.019E-02, 
 3.556E-04, 3.556E-04, 2.850E-06, 2.850E-06, 2.850E-06, 2.732E+03, 1.240E+07, 1.240E+07, 
 1.240E+07, 1.240E+07, 1.240E+07, 1.240E+07, 5.300E+06, 5.400E+06, 5.400E+06, 1.600E-01, 
 1.600E-01, 1.600E-01, 1.450E+04, 1.450E+04, 8.000E+03, 1.450E+04, 1.450E+04, 1.450E+04, 
 5.500E+04, 1.920E+03, 1.920E+03, 1.169E-03, 1.169E-03, 6.452E-04, 1.169E-03, 1.169E-03, 
 1.169E-03, 1.038E-02, 3.556E-04, 3.556E-04, 2.900E-06, 2.900E-06, 2.900E-06 
*DEPVAR
  20 
** ==========================================================================================
** ==========================================================================================
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